Search results for "Maximal monotone map"
showing 4 items of 4 documents
Nonlinear Robin problems with unilateral constraints and dependence on the gradient
2018
We consider a nonlinear Robin problem driven by the p-Laplacian, with unilateral constraints and a reaction term depending also on the gradient (convection term). Using a topological approach based on fixed point theory (the Leray-Schauder alternative principle) and approximating the original problem using the Moreau-Yosida approximations of the subdifferential term, we prove the existence of a smooth solution.
Extremal solutions and strong relaxation for nonlinear multivalued systems with maximal monotone terms
2018
Abstract We consider differential systems in R N driven by a nonlinear nonhomogeneous second order differential operator, a maximal monotone term and a multivalued perturbation F ( t , u , u ′ ) . For periodic systems we prove the existence of extremal trajectories, that is solutions of the system in which F ( t , u , u ′ ) is replaced by ext F ( t , u , u ′ ) (= the extreme points of F ( t , u , u ′ ) ). For Dirichlet systems we show that the extremal trajectories approximate the solutions of the “convex” problem in the C 1 ( T , R N ) -norm (strong relaxation).
Relaxation for a Class of Control Systems with Unilateral Constraints
2019
We consider a nonlinear control system involving a maximal monotone map and with a priori feedback. We assume that the control constraint multifunction $U(t,x)$ is nonconvex valued and only lsc in the $x \in \mathbb{R}^{N}$ variable. Using the Q-regularization (in the sense of Cesari) of $U(t,\cdot )$, we introduce a relaxed system. We show that this relaxation process is admissible.
Existence and Relaxation Results for Second Order Multivalued Systems
2021
AbstractWe consider nonlinear systems driven by a general nonhomogeneous differential operator with various types of boundary conditions and with a reaction in which we have the combined effects of a maximal monotone term $A(x)$ A ( x ) and of a multivalued perturbation $F(t,x,y)$ F ( t , x , y ) which can be convex or nonconvex valued. We consider the cases where $D(A)\neq \mathbb{R}^{N}$ D ( A ) ≠ R N and $D(A)= \mathbb{R}^{N}$ D ( A ) = R N and prove existence and relaxation theorems. Applications to differential variational inequalities and control systems are discussed.